
PENGUJIAN PERANGKAT LUNAK
-BASIS PATH TESTING-

Eka Widhi Yunarso (EWD)

2017-2

Digunakan dilingkungan internal prodi
D3 Manajemen Informatika, Fakultas
Ilmu Terapan, Universitas Telkom

Basis Path Testing

TECHNIQUES FOR TESTING - DYNAMIC

Basis Path Testing

 a white-box testing technique, proposed by Tom McCabe, 1976

 to derive a logical complexity measure of a procedural design, and use this measure as a guide for
defining a basis set of execution paths

 test cases derived to exercise every statement and branch in the program at least once during testing
(statement/branch coverage)

 if every condition in a compound condition is considered, condition coverage can be achieved

 Steps:

 Draw a (control) flow graph, using the flowchart or the code

 Calculate the cyclomatic complexity, using the flow graph

 Determine the basis set of linearly independent paths

 Design test cases to exercise each path in the basis set

BASIS PATH TESTING
Flow Graph

 used to depict program control structure

 can be drawn from a flowchart (a procedural design representation)

 can be drawn from a piece of source code

 Flow Graph Notation

 a flow graph composed of edges and nodes

 an edge starts from a node and ends to another node

Sequence if-then-else While Repeat-until Case

...

BASIS PATH TESTING
Flow Graph

 Draw a flow graph from source code

1 procedure insert(a, b, n, x)

2 begin bool found:=false;

3 for I:=1 to n do

4 if a[I]=x

5 then found:=true; goto leave endif

6 enddo;

7 leave:

8 if found

9 then b[I]:=b[I]+1

10 else n:=n+1; a[n]:=x; b[n]:=1 endif

11 end insert

1, 2

3

6
4

5

7

8

9 10

11

BASIS PATH TESTING
Flow Graph

 Draw a flow graph from a
flowchart

h

gf

e

d

c

b

a
insert

X found?

found=true

x found?

Save x

Count-x =1

Yes No

end

Count-x +1

All checked?

found=false

No

No

Yes

Yes

BASIS PATH TESTING
Cyclomatic Complexity

 a software metric that provides a quantitative measure of the logical complexity of a
program

 Basis set: is a maximal linearly independent set of paths through a graph

 An independent path: is any path through a program that introduces at least one new set
of processing statements or a new condition (I.e. at least one new edge in a flow graph)

 Cyclomatic complexity defines the number of independent path in the basis set of a
program

 gives an upper bound for the number of tests that must be conducted to achieve
statement/branch/condition coverage

 How to calculate cyclomatic complexity:

cc = e - n + 2p

 e - number of edges; n - number of nodes; p - number of components;

 if all nodes in a graph are connected, then p = 1, thus

cc = e - n + 2

BASIS PATH TESTING: EXAMPLE 1
1. Draw a flow graph

0 /*Finding the maximum of three integers*/

1 #include <stdio.h>

2 intmaximum(int, int, int);

3 main(){

4 int a,b,c;

5 printf((“Enter three integers: “);

6 scanf(“%d%d%d”, &a,&b,&c);

7 printf(“Maximum is: %d\n”, maximum(a,b,c));

8 }

9 int maximum(int x, int y, int z){

10 int max=x;

11 if(y>max)

12 max=y;

13 if(z>max)

14 max=z;

15 return max

16 }
16

15

14

13

12

11

10

9

==>

BASIS PATH TESTING: EXAMPLE 1
2. Calculate cyclomatic complexity

 e=7, n=6, p=1; so that cc=7-6+2=3

3. Identify a basis set of independent paths

 p1: a-b-c-d-e-f (y>x, z>y)

 p2: a-b-d-e-f (y<=x, z>x)

 p3: a-b-c-d-f (y>x, z<=y)

4. Design test cases
Test
case

Test data
(x,y,z)

Expected
result

Actual
result

Pass/fail

p1 2, 3, 4 4

p2 3, 1, 6 6

p3 5, 7, 3 7

BASIS PATH TESTING: EXAMPLE 2
1. Draw a flow graph

 see slide 6-24: source code, flow graph

2. Calculate cyclomatic complexity

 e = 12; n = 10; p = 1

 cc = 12 - 10 + 2 x 1 =4

3. Determine a basis set of independent paths

 expect to specify 4 independent paths

 p1: 1-2-3-7-8-9-11

 p2: 1-2-3-4-5-7-8-9-11

 p3: 1-2-3-4-5-7-8-10-11

 p4: 1-2-3-4-6-3-7-8-10-11 (1 or more times)

 HOWEVER: by reading source code, we found

 3-7 => 10; 5 => 9

 p1 and p3 must be modified

1, 2

3

6
4

5

7

8

9 10

11

BASIS PATH TESTING: EXAMPLE 2
3. Determine a basis set of independent paths

 if p3 modified, it would be the same as p2. Thus p3 should be deleted.

 But the new paths introduced by p3 (8-10-11) must be covered by other paths! We found p4 covers them.

 Modify p1, delete p3, we can have three independent paths

 p1: 1-2-3-7-8-10-11

 p2: 1-2-3-4-5-7-8-9-11

 p3: 1-2-3-4-6-3-7-8-10-11

 if you study the program carefully, you will find the following is better

 p1: 1-2-3-7-8-10-11 (insert x when a[] is empty)

 p2: 1-2-3-4-5-7-8-9-11(insert x when a[1]=x)

 p3: 1-2-3-4-6-3-4-5-7-8-9-11 (insert x when a[i]=x,i>1, n>=i)

 p4: 1-2-3-4-6-3-7-8-10-11 (insert x when a[] is not empty and x is not in a[]; p4 does not introduce any new
edge but it exercises a new combination of the program logic!)

BASIS PATH TESTING: EXAMPLE 2
4. Design test cases

 Path 1 test case: 1-2-3-7-8-10-11 (insert x when a[] is empty)

 input data: n=0; x=8; a[1]=0; b[1]=0;

 expected results: a[1]=8; b[1]=1; n=1;

 Path 2 test case: 1-2-3-4-5-7-8-9-11(insert x when a[1]=x)

 input data: n=3; x=9; a[1]=9; a[2]=2; a[3]=3;b[1]=2;b[2]=5;b[3]=8;

 expected results: b[1]=3

 Path 3 test case: 1-2-3-4-6-3-4-5-7-8-9-11 (insert x when a[i]=x,i>1, n>=i)

 input data: n=3;x=3;a[1]=9;a[2]=2;a[3]=3;b[1]=3;b[2]=2;b[3]=8;

 expected results: b[3]=9

 Path 4 test case: 1-2-3-4-6-3-7-8-10-11 (insert x when a[] is not empty and x is not in
a[])

 input data: n=3;x=6;a[1]=9;a[2]=2;a[3]=3;b[1]=3;b[2]=2;b[3]=8;

 expected results: a[4]=6; b[4]=1; n=4;

i = 1;
total.input = total.valid = 0;
sum = 0;
DO WHILE value[i] <> -999 AND total.input < 100

increment total.input by 1;
IF value[i] >= minimum and value[i] <= maximum

THEN increment total.valid by 1;
sum = sum + value[i]

ELSE skip
ENDIF
increment I by 1;

ENDDO

IF total.valid > 0
THEN average = sum / total.valid;
ELSE average = -999;

ENDIF

END average

LATIHAN

1. Buatlah Flowgrap dari potongan badan program di atas!

2. Tentukan:

a) Berapa jumlah predicate node

b) Berapa nilai V(G)

3. Tuliskan berapa independent path dari flowgrap di atas!

4. Desainlah basis path test cases-nya (lihat contoh di materi)!

Kumpulkan sebagai tugas individu, kirim melalui email dengan subject basis_path maksimal
hari ini, Senin 12 Maret 2018 pukul 08.00 WIB

LATIHAN

REFERENCES

• http://softwaretestingfundamentals.com

• Pressmann, R.S (2010). Software Engineering A Practitioner's
approach. New York: McGraw-Hill.

• Agus Pratondo, d. (2009). Jaminan Mutu Sistem Informasi.
Bandung: Politeknik Telkom.

• Eka Widhi Yunarso (2013). Student Workbook Jaminan Mutu
Sistem Informasi. Yogyakarta: DeePublished

http://softwaretestingfundamentals.com/

